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A COMPUTING METHOD FOR SOUND PROPAGATION

THROUGH A NONUNIFORM JET STREAM

Sharon L. Padula and C. H. Liu*
NASA Langley Research Center

Hampton, Virginia

ABSTRACT

Understanding the principles of jet noise propagation is an

essential ingredient of systematic noise reduction research. High speed

computer methods offer a unique potential for dealing with complex real

life physical systems whereas analytical solutions are restricted to

sophisticated idealized models. The classical formulation of sound

propagation through a jet flow was found to be inadequate for computer

solutions and a more suitable approach was needed. Previous investigations

selected the phase and amplitude of the acoustic pressure as dependent

variables requiring the solution of a system of nonlinear algebraic equations.

The nonlinearities complicated both the analysis and the computation. A

reformulation of the convective wave equation in terms of a new set of

dcDendent variables is developed with a special emphasis on its suitability

for numerical solutions on fast computers. The technique is very attractive

because the resulting equations are linear in nonwaving variables. The

computer solution to such a linear system of algebraic equations may be

obtained by well-defined and direct means which are conservative of computer

time and storage space. Typical examples are illustrated and computational

results are compared with available numerical and experimental data.

* NAS-NRC/NASA Research Associate g
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Symbols

a Ambient speed of sound

A Amplitude

d Jet exit diameter, 0.01905

f Frequency in Hertz

M Flow Mach number; U i/a

r,e,o Spherical polar coordinates as in figure 1

r Non-dimensional r w.r.t. d; r/d

t Time

U Longitudinal component of flow velocity

U Jet exit velocity

W Non-dimensional angular frequency; wd/a

x Cartesian coordinate in the windward direction
of the jet

Z Complex variable; Aei'I

Constant in equation 3; a2 < 1

Coordinate transformation; tan-1 (a- 2 tan 6)

n Coordinate transformation; ln r

I Quasi velocity potential

Yi, To Phase; T = Y@ + / + o(r2)

w Angular frequency
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INTRODUCTION

This work is an extension of a program at NASA Langley Research Center

concerning the investigation of noise generated by a jet. It improves upon

previous work by Schubert1 and by Liu and Maestrello2 in which finite

difference equations appropriate to the propagation of sound are solved by

iterative methods for a sinusoidal point source on the axis of the potential

flow region of a subsonic jet. A computer-oriented method is developed

which solves typical sound propagation problems while using a minimum amount

of costly computer resources. The method is tested for cases equivalent

to those presented in reference 1 so that comparisons can be made with

numerical as well as experimental results. The present results compare

favorably with experimental measurements by Grande , whereas the numerical

computations in reference 1 overpredict the depth of the downstream "valley"

in jet noise directivity. More notably, the present method drastically

reduces the requisite computer time, computer storage space and peripheral

usage. Furthermore, the current formulation can be solved by direct methods

as opposed to the iterative procedure employed by Schubert. Direct methods

are desirable because they are straightforward, they guarantee results and

because suitable computer routines are often available as standard library

subroutines.

The method presented here has been thoroughly tested using the idealized

model outlined in reference 1. Immediate extension to more realistic models,

e.g.,reference 2, is possible and would presumably net even more reliable

results.
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Formulation of Problem

The Nonuniform Jet Flow Field.- The present method of solution is

tested for the case of an acoustic point source located on the centerline

and contained within the potential core of a spreading jet, figure 1. The

jet nozzle is cylindrical with diameter, d. The jet flow is axisymmetric but

nonuniform such that the velocity profiles at any cross-section are determined

from experimental and empirical data. The origin of the coordinate system

is fixed at the source while the coordinate of the flow field is fixed at

the virtual origin of the jet. Most of the calculations are done in the

spherical polar coordinates, (r, e, 0).

The Convective Wave Equation.- Sound propagation through a flow field

can be described most simply by the following convective wave equation:

) 8 2 2]+- V =0 (1)

Here a is the ambient speed of sound, U is flow velocity, and N is Obukhov's

"quasi-potential" variablel . The formulation in terms of H is selected over

th _suual pressure fourmaLtion since in this way relatively good results are

possible without the addition of corrective terms to the right-hand side of

the equation.

Assuming a harmonic source, H can be expressed as = A exp I((r - Wt)

where A & T are the amplitude and phase of the radiated sound waves and r

denotes the nondimensional radial distance with respect to the nozzle

diameter, d. Substituting H into equation 1 results in a time independent

partial differential equation which is nonlinear in A and T. Schubert1

chooses to solve this equation by application of the finite difference
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method. This necessitates solving a system of simultaneous nonlinear

algebraic equations.

There is no direct method for solving such a system of nonlinear equations.

Iterative computer methods are available but they have a number of drawbacks.

First, they are highly specific. The coding is dependent on the problem

to be solved and must be rewritten and retested for each new equation.

Secondly, the accuracy of the results depends upon how well and how quickly

the process converges. In the case of sound propagation through a flow,

it remains to be shown that the process does in fact converge for all

instances.

The problems inherent in iterative methods can be avoided. The variable

T can be represented by the expansion, T = {o + I/r + o(r 2) so that T

approaches T0 as r approaches infinity. Then H = Z exp i(rPo - t) .

Thus, Z is a single complex variable and equation 1 can be rewritten

as a linear partial differential equation in Z. In this way, the solution by

finite difference method involves merely the solution of a system of

simultaneous linear algebraic equations. Most computer subroutine libraries

contain routines adequately suited to this task.

Numerical Solution

Underlying Assumptions.- The basic assumptions and basic scheme for

solving the problem follow directly from previous authors1 '2 . Figure 2

shows the spreading jet superimposed on a polar grid. An antijet is assumed

in order to avoid problematic boundary conditions along the rigid walls of

the jet nozzle.

The value of the complex variable, Z, changes most rapidly near the

point source and in the region of significant flow. It is desirable to

apply the finite difference method to an unequally spaced grid which has a
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concentration of points in the areas of greatest change, figure 2. To avoid

the difficulties posed by an uneven grid, an even grid is specified in some

new coordinates, ' and , figure 3. This new grid in (nz) maps onto the

desired uneven grid in (r,e) according to the following transformation:

S= Iln r
1 -2 (2)

= tan-1 (a-2 tan e).(2)

For illustration purposes, the polar grid in (n,C) is thought of as a

rectangular grid with n x m intersecting lines.

The Finite Difference Method.- The partial differential equation in Z

should be satisfied at each interior point of the region of interest. If

the partial derivatives in this equation are replaced by their central

(ifference approximations, a nine-point difference equation results. Writing

this difference equation at each interior grid point gives (n-l) x (m-l)

equations in n x m unknowns. Boundary conditions are the additional equations

needed to specify a unique solution.

Boundary Conditions.- The equation in Z is an elliptic type partial

differential equation, thus,the boundary value problem is well-posed.

The region, D., ib bounded by two concentric half circles centered on

the point source and by two line segments on the axis of symmetry, figure 4.

The inner circle has a radius of k d and the outer circle has a radius of

100 d, where d is.the diameter of the jet nozzle. In this way, the inner

boundary is contained in the potential core of the jet, and the outer boundary

approximates the far field.

The inner boundary conditions come from a solution derived by Moretti

and Slutky4 The solution i specified for a oint source in a uniformand Slutsky .The solution is specified for a point source in a uniform
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flow. It gives the sound pressure level for points a small distance from

the source. Since the acoustic source and,the inner boundary are contained

in the potential core of the Jet, they are in a locally uniform flow and

the Moretti and Slutsky solution is approximately valid.

The outer boundary conditions at the far field are essentially the

same as the Sommerfeld radiation conditions. Along the centerline, three-point

symmetry conditions are used.

Results and Discussion

Figures 5-7, show sample results at a variety of flow velocities,

acoustic source frequencies and radial distances from the source. In each

graph, sound pressure level relative to SPL at 0 = 900 is plotted against

0. These figures facilitate comparisons between the experimental data of

reference 3 and the numerical results of this paper and reference 1.

Figure 5 shows comparable results for the flow velocities Mach 0.3,

Mach 0.5, and Mach .0.9. Here radial distance from the source and source

frequency remain constant at 100 diameters and 3000 Hertz, respectively.

Notice that the corre3pondence between experimental results and the current

numerical results is esvecially goou at the lower Mach numbers. Also notice

the discrepancies between the numerical results of reference 1 and experimental

results at these same Mach numbers.

Figure 6 shows graphs, similar to those above, where radial distance

and flow velocity are constant (r = 100 d and M = 0.3) while frequency changes

from 3000 Hz to 5000 Hz to 7000 Hz. In all cases, numerical results obtained

by the present method are superior to those obtained in reference 1 with

respect to their agreement with experiment.

Figure 7 illustrates the differences between the current method and
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the previous one. Sound pressure levels for Mach 0.7 and frequency 3000 Hz

are plotted at a variety of radial distances from the source. It is clear

that the differences between the graphs increase with the radial distance.

Even greater discrepancies are evident when phase is plotted against e as in

figure 8. Agai., results for Mach 0.7 and frequency 3000 Hz are plotted at

a variety of rw,±1l distances from the source. In this case, the graphs

from reference 1 are markedly different from those produced by the present

method.

It should be emphasized that the present method and the method of

reference 1 use the same sound propagation model for testing purposes.

T~eoretically, they should produce identical results. Differences arise

when theory is translated into practical computer programs. Iterative

methods, such as the one described in reference 1, are often inaccurate

because the iterative process must be terminated after a reasonable amount of

computer time has elapsed. Furthermore, an iterative method is more

susceptible to round-off errors which tend to multiply as computing time

incmr ses. Direc "cthods, such as the method presented here, largely avoid

these problems and generally produce more reliable results. This explains why

graphs of the direct method's results match graphs of experimental data so

closely.

The present method has other advantages besides accuracy. It is quite

straightforward and relatively easy to program. A typical program will

execute in well under 1 minute of central memory time in a CDC 6600

computer. The computer storage space requirements are reasonable so that

transfer of data to and from peripheral storage devices is unnecessary.

None of these things can be said about the method of reference 1. Far from

guaranteeing results in under 1 minute, the iterative method can not
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guarantee convergence to a solution for the general case. Furthermore, the

algorithm for solving a system of nonlinear equations is quite complex and

requires large amounts of storage space.

Conclusion

It has been shown that the present method for sound propagation

problems has distinct advantages over previous methods. It is a direct

rather than iterative method and, consequently, it is faster, more accurate,

and less complicated. The method is conservative of computer resources,

relatively easy to program, and makes use of standard library subroutines.

Since the method itself is relatively simple, increasingly complex and

realistic models can be tested.
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Figure 1. Jet flow configuration.
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